首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11110篇
  免费   1353篇
  国内免费   931篇
电工技术   297篇
综合类   783篇
化学工业   2752篇
金属工艺   1745篇
机械仪表   220篇
建筑科学   568篇
矿业工程   189篇
能源动力   1126篇
轻工业   394篇
水利工程   261篇
石油天然气   336篇
武器工业   58篇
无线电   960篇
一般工业技术   1647篇
冶金工业   391篇
原子能技术   409篇
自动化技术   1258篇
  2024年   26篇
  2023年   209篇
  2022年   275篇
  2021年   377篇
  2020年   355篇
  2019年   355篇
  2018年   375篇
  2017年   438篇
  2016年   397篇
  2015年   395篇
  2014年   546篇
  2013年   1059篇
  2012年   685篇
  2011年   762篇
  2010年   596篇
  2009年   662篇
  2008年   633篇
  2007年   679篇
  2006年   614篇
  2005年   498篇
  2004年   477篇
  2003年   396篇
  2002年   355篇
  2001年   287篇
  2000年   258篇
  1999年   183篇
  1998年   168篇
  1997年   149篇
  1996年   146篇
  1995年   151篇
  1994年   119篇
  1993年   103篇
  1992年   89篇
  1991年   96篇
  1990年   93篇
  1989年   91篇
  1988年   58篇
  1987年   37篇
  1986年   24篇
  1985年   44篇
  1984年   32篇
  1983年   16篇
  1982年   24篇
  1981年   14篇
  1980年   13篇
  1979年   6篇
  1978年   7篇
  1976年   4篇
  1975年   5篇
  1974年   4篇
排序方式: 共有10000条查询结果,搜索用时 231 毫秒
81.
82.
在390℃温度下对AZ31镁合金进行固态扩渗Zn+La2O3(扩渗剂中的质量分数为0.4%)处理,扩渗时间分别为0、2、4、6h。研究了不同扩渗时间下镁合金表面渗层组织的变化,并测试了镁合金表面扩渗层的硬度和耐腐蚀性能。结果表明:当扩渗时间为2h时,未出现渗层;当扩渗时间为4h时,扩渗层中出现了Mg0.97Zn0.03固溶体和Mg-Zn化合物(MgZn+Mg2Zn3+MgZn2+ Mg2Zn11)。随着扩渗时间的延长,使得Zn原子的扩渗能力增强,Mg和Zn反应扩散形成了多种化合物,在AZ31镁合金表面得到了渗层。当扩渗时间为6h时,Mg7Zn3作为一种新相出现在了渗层中,同时,渗层组织粗化。扩渗试样的硬度随扩渗时间的增加而增加,而耐腐蚀性能在扩渗时间为4 h时为最佳。  相似文献   
83.
We present an in-depth investigation of the aging effects in silicone molds for vacuum casting processes. Their lifetime is limited to a few production cycles due to contamination with the diisocyanate component of polyurethane casting materials. Using thermogravimetric analysis measurements, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and helium-ion-microscopy the chemical and physical mechanisms of the aging process have been identified. It has been shown that a diffusion process of diisocyanate into the cavity surface leads to the formation of interpenetrating polymer networks of polyurea derivatives in silicone rubber. This has been proven by extracting and analyzing polyurea of low molecular weights from the silicone.  相似文献   
84.
85.
A dense Ce0.9Gd0.1O2−d (GDC) interlayer is an essential component of the SOFCs to inhibit interfacial elemental diffusion between zirconia-based electrolytes (eg YSZ) and cathodes. However, the characteristic high sintering temperature of GDC (>1400°C) makes it challenging to fabricate an effective highly dense interlayer owing to the formation of more resistive (Zr,Ce)O2 interfacial solid solutions with YSZ at those temperatures. To fabricate a useful GDC interlayer, we studied the influence of transition metal (TM) (Co, Cu, Fe, Mn, & Zn) doping on the sintering and electrochemical properties of GDC. Dilatometry data showed dramatic drops in the necking and final sintering temperatures for the TM-doped GDCs, improving the densification of the GDC in the order of Fe > Co > Mn > Cu > Zn. However, the electrochemical impedance data showed that among various transition metal dopants, Mn doping resulted in the best electrochemical properties. Anode supported SOFCs with Mn-doped, nano, and commercial-micron GDC interlayers were compared with regard to their performance and stability levels. Although all of the SOFCs showed stable performance, the SOFC with the Mn-doped GDC interlayer showed the highest power density of 1.14 W cm−2 at 750°C. Hence, Mn-doped GDC is suggested for application as an effective diffusion barrier layer in SOFCs.  相似文献   
86.
The impact of external mass transport on the biodegradation rate of phenol in a packed bed bioreactor (PBBR) was studied. A potential bacterial species, Bacillus flexus GS1 IIT (BHU), was isolated from the petroleum‐contaminated soil. Low‐density polyethylene (LDPE) immobilized with the B. flexus GS1 IIT (BHU) was used as packing material in the PBBR. The PBBR was operated by varying the inlet feed flow rate from 4 to 10 mL/min, and the corresponding degradation rate coefficients were found to be in the range of 0.119–0.157 L/g h. In addition, the highest removal rate of phenol was obtained to be 1.305 mg/g h at an inlet feed rate of 10 mL/min. The external mass transfer was studied using the model . A new empirical correlation for the biodegradation of phenol in the PBBR was developed after the evaluation at various values of K and n.  相似文献   
87.
In a proton exchange membrane fuel cell (PEMFC), effective GDL surface water elimination is significant to water management. This paper used the volume-of-fluid method (VOF) method to carry out simulation research on transferring liquid water in the flow channel with a hydrophilic pipe. The findings indicated that compared with a straight channel, a hydrophilic pipe structure could effectively remove water from the gas diffusion surface (GDL) and reduce the surface water coverage of the GDL. With the increase in the diameter and height of the pipe structure, the GDL surface's water coverage first increased and then decreased, and it was less with the pipe structure than with the direct flow channel. The removal rate of water on the GDL surface was accelerated. The spacing of hydrophilic pipes has a significant impact on the transportation of water. As the spacing increases, the removal rate of water on the GDL surface slowed. A hydrophilic pipe structure with a diameter of 75 μm, a height of 400 μm, and spacing of 300 μm has good water removal performance on the GDL surface. This research work proposes a new internal structure design of the flow channel, which has specific implications for removing water on the GDL surface.  相似文献   
88.
This article investigates nexuses between innovations in mobile money and financial inclusion. Demand and supply factors that affect the diffusion of mobile services as well as macro-level institutional and economic factors are taken in account. The focus is on 148 countries with data mostly consisting of 2010–2014 averages. The empirical evidence is based on Tobit regressions. The study finds that when the empirical analysis is robust to multicollinearity, two main tendencies are apparent: the significant findings of Lashitew et al. (2019) [1] are confirmed and many new significant estimated coefficients emerge. While this study confirms the findings of the underlying research, it also goes further to improve the harmony in narratives between the predictors and the outcome variables. Accordingly, by accounting for multicollinearity, the earlier findings are now more consistent across the set of predictors (i.e. demand and supply factors) and the attendant financial inclusion outcomes (i.e. mobile money accounts, mobile used to send money and mobile used to receive money).  相似文献   
89.
The dynamic behavior of liquid droplets on a reconstructed real gas diffusion layer (GDL) surface with the inertial effect produced by the three dimensional (3D) flow channel is investigated using an improved pseudopotential multiphase model within the unified lattice Boltzmann model (ULBM) framework, which can realize thermodynamic consistency and tunable surface tension. The microstructure of the GDL (Toray-090) including carbon fibers and polytetrafluoroethylene (PTFE) is reconstructed by a stochastic and mixed-wettability model. The critical force formulation for the Cassie-Wenzel transition of a droplet on GDL surface is derived. The effects of inertia and contact angles on the liquid droplet transport process on a reconstructed real GDL surface with a 3D flow channel are investigated. The results show the normalized center-of-mass coordinate X may enter the channel wall area or fluctuate around the initial position. With increased inertia applied on the droplet, the normalized center-of-mass coordinate Y grows faster and the normalized center-of-mass coordinate Z decreases. It is found by the ULBM for the first time that the liquid droplet is pushed back into the GDL by inertial effect. With the increase of inertia and the decrease of contact angle of GDL, both the droplet penetration depth in GDL and the droplet invasion fraction increase. The droplet invasion fraction in GDL is up to 30%.  相似文献   
90.
The effects of surface and interior degradation of the gas diffusion layer (GDL) on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) have been investigated using three freeze-thaw accelerated stress tests (ASTs). Three ASTs (ex-situ, in-situ, and new methods) are designed from freezing ?30 °C to thawing 80 °C by immersing, supplying, and bubbling, respectively. The ex-situ method is designed for surface degradation of the GDL. Change of surface morphology from hydrophobic to hydrophilic by surface degradation of GDL causes low capillary pressure which decreased PEMFC performance. The in-situ method is designed for the interior degradation of the GDL. A decrease in the ratio of the porosity to tortuosity by interior degradation of the GDL deteriorates PEMFC performance. Moreover, the new method showed combined effects for both surface and interior degradation of the GDL. It was identified that the main factor that deteriorated the fuel cell performance was the increase in mass transport resistance by interior degradation of GDL. In conclusion, this study aims to investigate the causes of degraded GDL on the PEMFC performance into the surface and interior degradation and provide the design guideline of high-durability GDL for the PEMFC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号